Contactor-based
automatic transfer switches

Closed transition

## Experience, innovation and reliability



11



## Built with years of experience Powered with innovation Delivered with reliability

## A history of experience, innovation and reliability

As a premier industrial manufacturer, Eaton's electrical business is one of the world's leading suppliers of electrical control products and power distribution equipment with yearly sales of over $\$ 2.5$ billion. Eaton's electrical products include a complete line of low and medium voltage assemblies from substations, switchgear and panelboards to loadcenters, transformers and safety switches. These products are used wherever there is a demand for electrical power in residences, high-rise apartment and office buildings, commercial sites, hospitals and factories.

## Built with experience

For over a century, Eaton has focused on providing quality power-centric products and services. In today's business environment, customers like you are driving our transformation from a leading global electrical components provider into a customer-centric solutions partner who understands your business. We do this through in-depth collaboration with customers and subject matter experts studying the issues inherent to the electrical power distribution and control systems.

Eaton is one of the pioneering electrical manufacturers and has been focused on providing reliable backup power systems with transfer switch equipment for over 75 years.

## Powered with innovation

Eaton continues to meet changing industry needs by providing a broad range of automatic transfer switches. These switches may be grouped into a basic, enhanced or premium set of features that will meet your application requirements. Eaton has used industry-leading breaker-based designs for years and now has a line of contactor-based designs.

These designs can be matched to a family of automatic transfer switch controllers that will meet your specific needs. Identify your application, define your needs, and select the solution from Eaton.

## Delivered with reliability

Power outages due to bad weather or utility failure have grown increasingly costly and more disruptive to businesses and homeowners. A backup power system will keep your computers, security system, heating or refrigeration system, cash registers, home health care equipment, or any system that uses electric power energized and operational. The demands for reliability have increased. Eaton meets those expectations by the stringent UL® 1008 automatic transfer switches with a world-class product delivery system.
Eaton will provide the individual transfer switch built to exacting standards or supply the same transfer switch in an integrated lineup with other Eaton gear. For startup service, application support and emergency support, call Eaton Electrical Services \& Systems at 1-800-498-2678.


## Contactor-based transfer switches Switch type—overview and standards



## Solutions overview

Eaton's automatic transfer switches are designed to provide you with a full offering of transfer switches to solve your industry and application needs. Eaton offers the industry's most complete line of contactor-based, breakerbased, and Magnum ${ }^{\text {TM }}$-based transfer switches.

This wide range of selections enables you to identify your application needs and the benefits you expect to realize, and then choose the solution best for you. The cornerstone of these offerings is the proven design experience and reliability built into all Eaton transfer switches.

## Basic solution

The basic solution offers a transfer switch that meets the most basic and cost-effective requirements for an automatic, manual or non-automatic transfer switch.

This solution set allows you to choose from either a contactorbased or a breaker-based design and match that power-switching device with our basic transfer switch controller.

## Enhanced solution

The enhanced solution meets all of the basic automatic transfer switch needs. In addition to meeting the most basic transfer switch requirement, the enhanced solution allows for optimal control and improved flexibility. This solution set allows you to choose from either a contactor-based or a breaker-based design.

## Premium solution

The premium solution is offered for those applications requiring continuity of power during the transfer and routine test. This solution set offers both contactor-based and breakerbased designs with drawout capability.

## Switch types available

- Open transition
- Closed transition
- Delayed transition
- Bypass isolation


## Transfer Switch Standards

| UL 991 | UL standards for safety tests for safety-related <br> controls employing solid-state devices |
| :--- | :--- |
| UL 1008 | Dielectric test |
| NEMA® ICS 109.21 | Impulse withstand test |
| IEEE® 472 (ANSI C37.90A) | Ringing wave immunity/voltage surge test |
| EN55022 | (CISPR11): Conducted and radiated emissions |
| EN61000-4-2 Class B | Level 4 ESD immunity test |
| EN61000-4-3 | (ENV50140) Radiated RF, <br> electromagnetic field immunity test |
| EN61000-4-4 | Electrical fast transient/burst immunity test |
| EN61000-4-5 | IEEE C62.41: Surge immunity test |
| EN61000-4-6 | (ENV50141) Conducted immunity test |
| EN61000-4-11 | Voltage dips and interruption immunity |
| FCC Part 15 | Conducted/radiated emissions (Class A) |
| CISPR 11 | Conducted/radiated emissions (Class A) |
| IEC 1000-2 | Electrostatic discharge test |
| IEC 1000-3 | Radiated susceptibility tests |
| IEC 1000-4 | Fast transient tests |
| IEC 1000-5 | Surge withstand tests |
| CSA® conformance | C22.2 No. 178-1978 (reaffirmed 1992) |
| UL 869A | Reference standard for service equipment |
| UL 50/508 | Enclosures |
| NEMA ICS 1 | General standards for industrial control systems |
| NEMA ICS 2 | Standards for industrial control devices, <br> controllers and assemblies |
| NEMA ICS 6 | Enclosures for industrial controls and systems |
| NEMA ICS 10-1993 | AC automatic transfer switches |
| ANSI C33.76 | Enclosures |
| NEC® 517, 700, 701 and 702 | National Electrical Code® |
| NFPA® 70 | National Electrical Code |
| NFPA 99 | Health care facilities |
| NFPA 101 | Life Safety CodeEmergency and standby power systems <br> NFPA 110 <br> EGSA 100S <br> CSA C22.2 No. 178-1978 |

## Make the right decision:

- Identify your application
- Define your needs


## - Determine your right solution <br> - Select Eaton

## ATS Solution Guide: Highlighting Contactor-Based Designs ©



Eaton Solution
Premium solution
Continuity of power during retransfer
Critical load transfer applications

Maximum control and ultimate flexibility

Maximum investment
Customer Benefits
Greater reliability to avoid lost revenue and production time
Continuity of power through synchronization of sources Lower energy costs realized through managing demand charges No power interruption during switch inspection or testing

Greater reliability to avoid lost revenue and production time Safe preventative maintenance without power interruption No power interruption during switch inspection or testing

Enimanced solution
Momentary loss
of power acceptable during retransfer

Optimal control and improved flexibility

Moderate investment


Basic solution
Momentary loss
of power acceptable
during retransfer
Least critical load
transfer applications
Basic control and flexibility
Minimum investment
Special solution
Greater reliability to avoid lost revenue and production time
Safe preventative maintenance without power interruption Safe preventative maintenance without power interruption No power interruption during switch inspection or testing

Greater reliability to avoid lost revenue and production time
Lower energy costs realized from managing demand charges No power interruption during generator set testing

Greater reliability to avoid lost revenue and production time Lower energy costs realized from managing demand charges No power interruption during generator set testing
Ability to transfer large motor or inductive loads Allows loads to re-energize after transfer at normal inrush currents Avoid higher starting currents, which increase energy costs
Ability to transfer large motor or inductive loads
Allows loads to re-energize after transfer at normal inrush currents Avoid higher starting currents, which increase energy costs
Ability to transfer large motor or inductive loads
Allows loads to re-energize after transfer at normal inrush currents Avoid higher starting currents, which increase energy costs

Simplest of transfer switching solution
Safe manual transfer under load

## Most simple operation <br> Most cost-effective

Application flexibility
Permits safe and convenient non-auto transfer under load

Permits safe and convenient manual transfer under load Most cost-effective manual transfer

Continuity of power for UPS applications

Key Features
Soft load ramping
30 cycle, 85 kA short-time ratings
Integral overcurrent protection available
Drawout design
30 cycle, 85 kA short-time ratings Integral overcurrent protection available Integrated service entrance solution Interchangeable bypass and switch devices Drawout design
Interchangeable bypass and switch devices
Drawout design standard
Front access standard
Dual ATS
30 cycle, 85 kA short-time ratings
Integral overcurrent protection available
Integrated service entrance solution
Drawout design available

| Paralleled in less than 100 ms Programmable field settings Communication capability | - |
| :---: | :---: |
| 30 cycle, 85 kA short-time ratings on power circuit breaker Integral overcurrent protection available Integrated service entrance solution | - |

Multi-tap transformer voltage selection available -
Easily adjustable time delays for the neutral position
30 cycle, 85 kA short-time ratings on power circuit breaker -
Integral vercurrent trotection available
Integrated service entrance solution

## Integral overcurrent protection available

Integrated service entrance solution
Drawout design available

| Equal withstand, interrupting and closing ratings <br> Integral overcurrent protection available <br> Integrated service entrance solution | Open transition <br> Breaker-based <br> $(100-1000 \mathrm{~A})$ |
| :--- | :--- |
| Most compact offering <br> Multi-tap transformer voltage selection available | Open transition <br> Contactor-based <br> $(100-600 \mathrm{~A})$ |
| 30 cycle, 85 kA short-time ratings on power circuit breaker <br> Integral overcurrent protection available <br> Drawout design available | - |
| Equal withstand, interrupting and closing ratings <br> Integral overcurrent protection available <br> Deadfront design | - |
| Required UPS bypass signal prevents unauthorized bypass <br> High interrupting ratings <br> Reliable, manually initiated electrical operation | - |

(1) Emphasis in yellow bars.

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Commercial | Industrial | Utilities | Institutions | Government | Communications | Data Center |
| - | - | Soft load Magnum-based (600-5000A) |
| Closed transition Bypass isolation Magnum-based (200-5000A) |
| Closed transition Bypass isolation Contactor-based (100-1200A) |
| Closed transition Magnum-based (200-5000A) |
| Closed transition Contactor-based (40-1200A) |
| Delayed transition Breaker-based (30-5000A) | - | - |
| Delayed transition Contactor-based (40-1200A) | - | - |
| Open transition Magnum-based (200-5000A) | - | - |
| Open transition Breaker-based (30-1000A) | - | - |
| Open transition Contactor-based (40-1200A) | - | - |
| Non-auto Magnum-based (200-5000A) | Non-auto Magnum-based (200-5000A) | - | - | - | - | - |
| Manual or non-auto Breaker-based (30-1000A) | Manual or non-auto Breaker-based (30-1000A) | - | - | - | - | - |
| Maintenance bypass Breaker-based (100-1000A) |



## Contactor-based transfer switches <br> Switch type-open transition



Contactor-Based ATS with ATC-300 Controller

## UL 1008 Withstand and Close-on Ratings (kA)

|  | 480V |  |  | 600V |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| UL 1008 Ampere Rating | Any <br> Breaker | Specific <br> Breaker | Any <br> Breaker | Specific <br> Breaker |  |  |
| $\mathbf{1 0 0}$ | 10,000 | 30,000 | 10,000 | 22,000 |  |  |
| 200 | 10,000 | 30,000 | 10,000 | 22,000 |  |  |
| 260 | 35,000 | 50,000 | 35,000 | 42,000 |  |  |
| 320 | 35,000 | 50,000 | 35,000 | 42,000 |  |  |
| $\mathbf{4 0 0}$ | 35,000 | 50,000 | 35,000 | 42,000 |  |  |
| 600 | 50,000 | 65,000 | 50,000 | 65,000 |  |  |
| 800 | 50,000 | 65,000 | 50,000 | 65,000 |  |  |
| $\mathbf{1 0 0 0}$ | 50,000 | 65,000 | 50,000 | 65,000 |  |  |
| $\mathbf{1 2 0 0}$ | 50,000 | 65,000 | 50,000 | 65,000 |  |  |



## Product description

The automatic open transition contactor-based transfer switch is the most basic design that will provide a fully functioning automatic transfer switch. An automatic open transition transfer switch may be used for those applications where emergency backup power is required but a momentary loss of power is acceptable on the retransfer from emergency to normal.

## Electrical ratings

- 40-1200A
- Up to 600V
- Two-, three- or four-pole
- NEMA 1, 3R
- $100 \%$ rated


## Commercial design highlights

- UL 1008 front access
- High withstand and closing ratings
- Compact design


## Dimensions in Inches (mm)

| Ampere Rating | Height | Width | Depth | Weight in Ibs (kg) |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 0 - 1 0 0}$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $156(71)$ |
| $150-200$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $164(74)$ |
| $225-400$ | $48.74(1238.0)$ | $25.25(641.4)$ | $13.84(339.0)$ | $260(118)$ |
| $600-1200$ | $79.35(2015.5)$ | $25.25(641.4)$ | $22.46(570.5)$ | $600(272)$ © |

(1) Subtract 20 lbs . for two-pole and add 50 lbs . for four-pole.


## Contactor-based transfer switches Switch type-closed transition



Closed Transition ATS with ATC-800 Controller

## Product description

The automatic closed transition contactor-based transfer switch is the most basic design that will connect both sources before the transfer occurs. An automatic closed transition transfer switch may be used for those applications in which emergency backup power is required but a momentary loss of power is not acceptable on the retransfer from emergency to normal. Closed transition permits periodic testing of the emergency source without interrupting power to the loads

## Electrical ratings

- 40-1200A
- Up to 600V
- Two-, three- or four-pole
- NEMA 1, 3R, 12
- 100\% rated


## Commercial design highlights

- UL 1008 three-position contactors
- High withstand and closing ratings
- Compact design


## Dimensions in Inches (mm)

| Ampere Rating | Height | Width | Depth | Weight in Ibs (kg) |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{4 0 - 1 0 0}$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $156(71)$ |
| $150-200$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $164(74)$ |
| $225-400$ | $48.74(1238.0)$ | $25.25(641.4)$ | $13.84(339.0)$ | $260(118)$ |
| $600-1200$ | $79.35(2015.5)$ | $25.25(641.4)$ | $22.46(570.5)$ | $600(272)$ © |

(1) Subtract 20 lbs . for two-pole and add 50 lbs . for four-pole.


## Contactor-based transfer switches

 Switch type-delayed transition

Delayed Transition ATS with ATC-300 Controller

## UL 1008 Withstand and Close-on Ratings (kA)

|  | 480v <br> Any <br> UL 1008 Ampere Rating <br> Breaker | Specific <br> Breaker | Any <br> Breaker | Specific <br> Breaker |
| :--- | :--- | :--- | :--- | :--- |
| 100 | 10,000 | 30,000 | 10,000 | 22,000 |
| 200 | 10,000 | 30,000 | 10,000 | 22,000 |
| 260 | 35,000 | 50,000 | 35,000 | 42,000 |
| 320 | 35,000 | 50,000 | 35,000 | 42,000 |
| 400 | 35,000 | 50,000 | 35,000 | 42,000 |
| 600 | 50,000 | 65,000 | 50,000 | 65,000 |
| 800 | 50,000 | 65,000 | 50,000 | 65,000 |
| $\mathbf{1 0 0 0}$ | 50,000 | 65,000 | 50,000 | 65,000 |
| 1200 | 50,000 | 65,000 | 50,000 | 65,000 |



## Product description

The automatic delayed transition contactor-based transfer switch is used in applications in which it is advantageous to have a time delay in the neutral position. This adjustable delay allows motor and transformer loads to decay, thus allowing normal inrush currents with the transfer.

## Electrical ratings

- 40-1200A
- Up to 600V
- Two-, three- or four-pole
- NEMA 1, 3R
- $100 \%$ rated


## Commercial design highlights

- UL 1008 three-position contactor
- High withstand and closing ratings
- Compact design


## Features

Standard features

- Voltage and frequency sensing
- Multiple field programmable time delays
- Switch position indication
- Source availability indication
- Source 1 and 2 auxiliary contacts
- Mimic diagram
- Programmable plant exerciser
- System test pushbutton
- Load shed from emergency


## Optional features

- Two- or four-position test switch
- Multi-meter options available
- Selectable automatic or non-automatic operation
- Space heaters
- Surge suppression


## Dimensions in Inches (mm)

| Ampere Rating Height |  | Width | Depth | Weight in Ibs (kg) |
| :--- | :--- | :--- | :--- | :--- |
| $40-100$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $156(71)$ |
| $150-200$ | $38.68(982.4)$ | $18.31(465.1)$ | $13.34(339.0)$ | $164(74)$ |
| $225-400$ | $48.74(1238.0)$ | $25.25(641.4)$ | $13.84(339.0)$ | $260(118)$ |
| $600-1200$ | $79.35(2015.5)$ | $25.25(641.4)$ | $22.46(570.5)$ | $600(272) \mathbf{0}$ |

(1) Subtract 20 lbs . for two-pole and add 50 lbs . for four-pole.


## Contactor-based transfer switches Switch type-bypass isolation



Bypass Isolation Switch with ATC-300 Controller

## UL 1008 Withstand and Close-on Ratings (kA)

| UL 1008 Ampere Rating | 480V |  | 600V |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Any <br> Breaker | Specific Breaker | Any <br> Breaker | Specific <br> Breaker |
| 100 | 10,000 | 30,000 | 10,000 | 22,000 |
| 200 | 10,000 | 30,000 | 10,000 | 22,000 |
| 260 | 35,000 | 50,000 | 35,000 | 42,000 |
| 320 | 35,000 | 50,000 | 35,000 | 42,000 |
| 400 | 35,000 | 50,000 | 35,000 | 42,000 |
| 600 | 50,000 | 65,000 | (1) | (1) |
| 800 | 50,000 | 65,000 | (1) | (1) |
| 1000 | 50,000 | 65,000 | (1) | (1) |
| 1200 | 50,000 | 65,000 | (1) | (1) |

(1) Consult Factory


## Product description

A bypass isolation transfer switch may be used to provide emergency power to life safety and other critical loads where maintenance of the main transfer switch, without interruption of power to the load, is either desirable or required.

## Electrical ratings

- 100-1200A
- Up to 600V
- Two-, three- or four-pole
- NEMA 1 and 3R enclosures
- 100\% rated


## Commercial design highlights

- UL 1008
- Easy access
- Top/bottom entry
- Isolated entry exit area
- Improved safety
- Compartment barriers
- Single-motion rack with door closed
- Extended battery backup
- Dual drawout ATS
- Installation flexibility
- Field entry/exit modification for top/bottom/both
- Interchangeable contactors


## Features

- Reliable microprocessor logic
- Designed to safely withstand fault currents
- Eliminates need for complex interlocks
- Drawout cassette design
- No service interruption when bypassing to the same source
- Drawout capabilities on both ATS and bypass portions
- Ability to test power switching elements during drawout process
- Power switching devices completely interchangeable between ATS and bypass portions
- Capability to have a dual ATS-controller will work with the ATS and bypass contactor
- Open or closed transition


## Dimensions in Inches (mm)

| Ampere Rating Height |  | Width | Depth | Weight in lbs (kg) |
| :--- | :--- | :--- | :--- | :--- |
| $40-200$ | $90.00(2286.0)$ | $46.00(1168.4)$ | $32.00(813.0)$ | $1800(817)$ |
| $300-400$ | $90.00(2286.0)$ | $46.00(1168.4)$ | $32.00(813.0)$ | $1800(817)$ |
| $500-600$ | $90.00(2286.0)$ | $46.00(1168.4)$ | $32.00(813.0)$ | $1800(817)$ |
| $600-1200$ | $90.00(2286.0)$ | $46.00(1168.4)$ | $32.00(813.0)$ | $1850(840)$ |

## Contactor-based transfer switches Controller features



Contactor-Based Design ATS Showing Optional Controllers Available

## Product description

The automatic transfer switch controller is a key component within the automatic transfer switch. It provides the intelligence to sense the proper conditions to initiate a transfer and a retransfer of the contactor. Eaton's automatic transfer switches come with the design flexibility of being applied with one of three controllers. All three controllers provide the basic functions needed to perform an automatic transfer.

## ATC-100 controller <br> General description

The ATC-100 controller was designed as a multi-function microprocessor open transition controller with simplified customer settings. The front panel interface displays source availability and connection status as well as convenient engine start and test buttons. Controller parameters are set via jumpers on the printed circuit board.

## Design highlights

- Mimic diagram with source available and connected LED indications
- Field selectable fixed time delays
- Permits system testing via a front screen test pushbutton
- Complies with UL 1008 / CSA 22.2-178
- Generator test selectableOFF, 7, 14, 28-day interval


## ATC-300 controler

## General description

From installation to programming to usage, the ATC-300 open transition controller was designed with operational simplicity in mind. The userfriendly front panel interface simplifies routine operation, programming, data presentation and setting adjustments. An LCD-based display provides the flexibility of a back-lit display for enhanced visibility.

## Design highlights

- LCD-based display for programming, system diagnostic and help message display
- Mimic diagram with source available and connected LED indications
- Stores customer/factory established parameters in nonvolatile memory
- Field-programmable time delays
- Displays real-time and historical information with a time-stamped history log
- Permits system testing via a front screen test pushbutton
- Programmable plant exerciser-OFF, daily, 7, 14, 28-day interval programmable run times
- Complies with UL 1008 / CSA 22.2-178


## ATC-800 Controller <br> General Description

The ATC-800 closed transition controller was designed with operational simplicity in mind The user-friendly front panel interface simplifies routine operation, programming, data presentation and setting adjustments. An LCD-based display provides the flexibility of a back-lit display for enhanced visibility.

## Design Highlights

- LCD-based display for programming, system diagnostic and help message display
- Mimic diagram with source available and connected LED indications
- Stores customer/factory established parameters in nonvolatile memory
- Field-programmable time delays
- Displays real-time and historical information with a time-stamped history log
- Permits system testing via a front screen test pushbutton
- Programmable plant exerciser-OFF, daily, 7, 14, 28-day interval selectable run times
- Communicate via Modbus communication protocol
- Complies with UL 1008 / CSA 22.2-178
- Load monitoring, delayed, in-phase and closed transition


## Automatic Transfer Switch Controllers

| Description | ATC-100 | ATC-300 | ATC-800 |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| System Application Voltage | 120/240V, 208V single-phase | Up to 600 Vac | Up to 600 Vac |
| Voltage Specifications |  |  |  |
| Voltage measurements of: | Source 1 and 2 | Source 1 and 2-VAB, VBC and VCA | Source 1, 2 and Load-VAB, VBC and VCA |
| Voltage measurement range | 120-480 Vac | 0-790 Vac rms | $0-700$ Vac rms |
| Operating Power | 95-145 Vac | 65-145 Vac | 65-145 Vac |
| Frequency Specifications |  |  |  |
| Frequency measurements of: | Source 2 | Source 1 and 2 | Source 1 and 2 |
| Frequency measurement range | $50-60 \mathrm{~Hz}$ | $40-70 \mathrm{~Hz}$ | $40-80 \mathrm{~Hz}$ |
| Environmental Specifications |  |  |  |
| Operating temperature range | -20 to $70^{\circ} \mathrm{C}$ | -20 to $70^{\circ} \mathrm{C}$ | -20 to $70^{\circ} \mathrm{C}$ |
| Storage temperature range | -30 to $85^{\circ} \mathrm{C}$ | -30 to $85^{\circ} \mathrm{C}$ | -30 to $85^{\circ} \mathrm{C}$ |
| Operating Humidity (Non-Condensing) | 0 to 95\% relative humidity (non-condensing) | 0 to 95\% relative humidity (non-condensing) | 0 to 90\% relative humidity (non-condensing) |
| Operating Environment | Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons | Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons | Resistant to ammonia, methane, nitrogen, hydrogen and hydrocarbons |
| Front Panel Indication |  |  |  |
| Mimic diagram with LED indication | Unit status. Source 1 and 2—available and connected (5 total) | Unit status. Source 1 and 2—available and connected (5 total) | Automatic, test and program mode. Source 1 and 2-available, connected and preferred. Load energized (10 total) |
| Main display | N/A | LCD-based display | LED display |
| Display language | N/A | English, French | English |
| Communications Capable | N/A | N/A | PONI/INCOM |
| Enclosure Compatibility | NEMA 1 and 3R | NEMA 1, 12 and 3R, UV resistant faceplate | NEMA 1, 12, 3R and 4X UV resistant faceplate |
| Programming Selections |  |  |  |
| Time delay normal to emergency | Selectable 2 or 15 seconds | 0-1800 seconds | 0-1800 seconds |
| Time delay emergency to normal | 5 minutes-fixed | 0-1800 seconds | 0-1800 seconds |
| Time delay engine cooldown | 1 minute-fixed | 0-1800 seconds | 0-1800 seconds |
| Time delay engine start | 3 seconds-fixed | 0-120 seconds | $0-120$ seconds |
| Time delay neutral | N/A | $0-120$ seconds | $0-120$ seconds or based on load voltage decay of $2 \%-30 \%$ of nominal |
| Time delay Source 2 fail | N/A | 0-6 seconds | $0-6$ seconds |
| Time delay voltage unbalance | N/A | 10-30 seconds | N/A |
| Voltage unbalance three-phase | N/A | 0 or 1 (1 = enabled) | - |
| Percent of unbalanced voltage dropout | N/A | 5\%-20\% (DO) dropout -2\% to 3\% (PU) | N/A |
| Phase reversal three-phase | N/A | OFF, ABC, CBA | N/A |
| In-phase | N/A | 0 or 1 (1 = Enabled) | N/A |
| Load sequencing | N/A | N/A | Up to 10 devices (via sub-network) |
| Pre-transfer signal | N/A | 1-120 seconds (Form C contact) | $0-120$ seconds up to 10 devices (via sub-network) |
| Plant exerciser | Selectable day, OFF, 7, 14, 28-day interval, 15 minutes run time, no load | Selectable—OFF, daily or 7, 14, 28-day intervals, 0-600 minutes, load or no load | Selectable—disabled or 7 day interval, 0-600 minutes, load or no load |
| Preferred source selection | N/A | N/A | Source 1 or 2 or none |
| Commitment to transfer in TDNE | N/A | N/A | Enabled or disabled |
| Re-transfer mode | N/A | N/A | Automatic or manual |
| Auto daylight saving time adjustment | N/A | 0 or 1 (1 = Enabled) | - |
| System selection | Utility/generator or dual utility | Utility/generator or dual utility | Utility/generator or dual utility or dual generator |
| Closed transition frequency difference | N/A | N/A | $0.0-3.0 \mathrm{~Hz}$ |
| Closed transition voltage difference | N/A | N/A | 1-5\% |

Note: Features are order-specific. Not all features are supplied as standard.

## Contactor-based transfer switches Ordering information and basic components



Contactor-Based Automatic Transfer Switch Catalog Numbering System


## Automatic Transfer Controller (ATC-100)

- Monitors power sources
- Initiates transfer adjustable settings for time delays via jumpers
- Optional ATC-300 controller
- Space heater (optional)
- Transfer mechanism-two-position mechanism, motor operated

[^0]
## Contactor-based transfer switches Integrated solutions



## Integrated Solutions

Minimize initial equipment costs, reduce installation time, and increase system reliability. These are goals of all involved in placing electrical distribution equipment in service-from the design engineer to the electrical contractor, and especially the end user of the equipment.

Eaton believes that the transfer switch equipment is an integral part of the distribution equipment. This fundamental belief is why Eaton offers various types of transfer switches for the design engineer, electrical contractor and the user to choose from. Eaton offers contactor-based, molded-case and circuit breaker style switches.
All Eaton transfer switches are designed to meet the requirements set forth by UL 1008; however, all transfer switches are not created equal. You can be assured of safe and reliable operation from all types of transfer switches that Eaton offers.


Automatic Transfer Switch Integrated into a Switchboard Lineup


[^1]Eaton's Electrical Sector is a global leader in power distribution, power quality, control and automation, and monitoring products. When combined with Eaton's full-scale engineering services, these products provide customerdriven PowerChain ${ }^{T M}$ solutions to serve the power system needs of the data center, industrial, institutional, public sector, utility, commercial, residential, IT, mission critical, alternative energy and OEM markets worldwide.

PowerChain solutions help enterprises achieve sustainable and competitive advantages through proactive management of the power system as a strategic, integrated asset throughout its life cycle, resulting in enhanced safety, greater reliability and energy efficiency. For more information, visit www.eaton.com/electrical.
Eaton Corporation
Electrical Sector
1111 Superior Ave.
Cleveland, OH 44114
United States
877-ETN-CARE (877-386-2273)
Eaton.com
© 2010 Eaton Corporation
All Rights Reserved
Printed in USA
Publication No. BR01602001E / Z10438
November 2010


PowerChain Management is a registered rademark of Eaton Corporation.

All other trademarks are property of their respective owners


[^0]:    Typical Contactor-Based Design Components

[^1]:    Satellite Facility Locations

